
Unordered Sequence Classes

7-22 COOL User’s Manual

Unordered Sequence Classes

7-21COOL User’s Manual

The following shows the output for the program:

 A programming language serves two related purposes: it provides a

 vehicle for the programmer to specify actions to be executed and a

 set of concepts for the programmer to use when thinking about what

 can be done. The first aspect ideally requires a language that is

 ‘close to the machine’, so that all important aspects of a machine

 are handled simply and efficiently in a way that is reasonably

 obvious to the programmer. The C language was primarily designed with

 this in mind. The second aspect ideally requires a language that is

 ‘close to the problem to be solved’ so that the concepts of a

 solution can be expressed directly and concisely. The facilities

 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words

 There are 71 unique words

 The most common word is ‘to’ and is used 9 times

Unordered Sequence Classes

7-20 COOL User’s Manual

 9 int main (void) {

10 Hash_Table<Gen_String,int> a1; // Declare Hash_Table variable

11 Gen_String s; // Temporary string variable

12 int counter = 0, max_count = 0; // Initialize word counters

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 if (h1.find (s)) // If word already found

18 h1.put (h1.key (), h1.value ()+1); // Update use count

19 else h1.put (s, 1); // Else add word

20 }

21 h1.reset (); // Invalidate current position

22 Iterator<Hash_Table> i1; // Iterator object

23 while (h1.next ()) { // While there are still nodes

24 counter += h1.value (); // Sum number of words used

25 if (h1.value () > max_count) { // If most used word so far

26 i1 = h1.current_position (); // Save position in list

27 max_count = h1.value (); // And keep track of usage

28 }

29 }

30 cout << ”There are ” << counter << ” words in the paragraph\n”;

31 cout << ”There are ” << h1.length () << ” unique words in the paragraph\n”;

32 h1.current_position () = i1; // Set position of most used word

33 cout << ”The most common word is ‘” << h1.key () << ”’ and is used ” <<

h1.value () << ” times\n”;

34 exit (0); // Exit with successful status

35 }

Lines 1 through 3 include the COOL Hash_Table.h, Gen_String.h, and Iterator.h
class header files. Line 4 includes a statically allocated paragraph of text to be scanned
by the program. Lines 5 and 6 define a container class of a hash table whose key is a
string and whose value is an integer. Lines 7 and 8 define an iterator for the hash table
class. Lines 10 through 13 declare various variables and print the complete paragraph. A
regular expression to match sequences of alphabetical characters (that is, words) is
compiled in line 14. Lines 15 through 20 contain a loop that finds each word in the para-
graph and adds it to the hash table if not already there. Otherwise, the current frequency
is incremented and used as the new value for the key. Line 21 resets the internal current
position iterator inside the hash table object and line 22 defines an iterator for a hash
table object.

Lines 23 through 29 are the heart of the program. The loop iterates through the elements
of the hash table summing up the frequencies of all the words to get a total word count.
In addition, if the count for a given word is the largest so far, the position in the table is
saved in the iterator object. This procedure repeats until all words have been scanned.
Lines 30 through 33 output the results of the word search and count. Finally, the pro-
gram ends with a successful completion code.

Unordered Sequence Classes

7-19COOL User’s Manual

void set_value_compare (Hash_Value_Compare = NULL);
Updates the value compare function for this instance of hash table.
Hash_Value_Compare is a function of type Boolean (*Function)(const
Vtype&,const Vtype&). If no argument is provided, the operator== for Vtype, the
value over which the class is parameterized, is used.

const Vtype& value ();
Returns a reference to the value of the key/value pair at the current position. If the
current position is invalid, an Error exception is raised.

Friend Functions: friend ostream& operator<< (ostream& os,
const Hash_Table<Ktype,Vtype>& ht);

Overloads the output operator for a reference to a Hash_Table<Ktype,Vtype> ob-
ject. This function provides a formatted output with key/value pairs printed one per
line.

inline friend ostream& operator<< (ostream& os,
 const Hash_Table<Ktype,Vtype>* ht);

Overloads the output operator for a pointer to a Hash_Table<Ktype,Vtype> object.
This function provides a formatted output with key/value pairs printed one per line.

Hash Table 7.9 The following program declares a hash table of strings and integers,

Example storing each word as the key and its frequency of occurrence in a paragraph of text as the

value. The hash table is traversed using the current position function of the class to de-
termine the total number of words and the most commonly used word in the paragraph.

 1 #include <cool/Hash_Table.h> // Include Hash_Table class

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE Hash_Table<Gen_String,int> // Declare Hash_Table type

 6 IMPLEMENT Hash_Table<Gen_String,int> // Implement Hash_Table type

 7 DECLARE Iterator<Hash_Table> // Declare Hash_Table iterator

 8 IMPLEMENT Iterator<Hash_Table> // Implement Hash_Table iterator

Unordered Sequence Classes

7-18 COOL User’s Manual

Boolean prev ();
Moves the current position pointer to the previous entry in the hash table and re-
turns TRUE. If the current position is invalid, this function moves to the last entry
and returns TRUE. If moving to the previous entry passes the first entry in the hash
table, this function invalidates the current position and returns FALSE.

Boolean put (const Ktype& key, const Vtype& value);
Searches the hash table for key and puts the corresponding key/value pair into the
hash table. If key is not there, the key/value pair is added and TRUE is returned;
otherwise, if key is already there, this function updates the value with value and
returns FALSE. If the bucket determined by the hash is full, the table grows and the
key/value pairs are rehashed and inserted. This function sets the current position to
the key/value pair.

Boolean remove ();
Removes the key/value at the current position and returns TRUE. This function
sets the current position to the entry immediately following the entry removed if in
the same bucket; otherwise, this function invalidates the current position. If the cur-
rent position is invalid, an Error exception is raised and, if the handler returns, this
function returns FALSE.

Boolean remove (const Ktype& key);
Searches the hash table for key, removes the indicated key/value pair from the ta-
ble, sets the current position to the old location of the key/value pair, and returns
TRUE. If key is not found in the hash table, this function returns FALSE.

inline void reset ();
Invalidates the current position.

Boolean resize (long number);
Resizes the hash table for at least the indicated number of entries. If a growth ratio
has been selected and it satisfies the resize request, the table is grown by this ratio.
This function invalidates the current position. If the resize value is zero or negative,
an Error exception is raised.

inline void set_hash (Hash h);
Updates the hash function for this instance of hash table. Hash is a function of type
unsigned long (*Function) (const Ktype&). If the key is of type char*, the hash is
the result of successively exclusive-or-ing each byte with the current hash value
shifted left seven bits. If the key is not of type char*, the default hash function is the
computation of a 32-bit value shifted left three bits with the result then modulo the
prime number of buckets. If the size of (Ktype) is greater than four bytes, the 32-bit
value is computed by successively exclusive-or-ing 32-bit values for the length of
the key.

void set_key_compare (Hash_Key_Compare = NULL);
Updates the key compare function for this instance of hash table. Hash_Key_Com-

pare is a function of type Boolean (*Function)(const Ktype&, const Ktype&). If
no argument is provided, the operator== for Ktype, the key over which the class is
parameterized, is used. If the key is a char*, a String, or a Gen_String, the default
compare function is a string comparison.

inline void set_ratio (float);
Updates the growth ratio for this instance of the hash table to the specified value.
When a hash table needs to grow, the current size is multiplied by the ratio to deter-
mine the new size. If ratio is negative, an Error exception is raised.

Unordered Sequence Classes

7-17COOL User’s Manual

Boolean find (const Ktype& key);
Searches the hash table for key and returns TRUE if found; otherwise, this function
returns FALSE. If key is found, this function sets the current position to the key/
value entry; otherwise, this function invalidates the current position.

Boolean get (const Ktype& key, Vtype& value);
Calculates the hash value for key and returns the value associated with that key in
the table by copying it to value. This function sets the current position to the key/
value pair. If key is found, this function returns TRUE; otherwise, this function
returns FALSE.

inline long get_bucket_count () const;
Returns the prime number of buckets currently allocated for the hash table.

inline int get_count_in_bucket (long n) const;
Returns the number of keys currently hashed to the zero-relative nth bucket.

Boolean get_key (const Vtype& value, Ktype& key);
Searches the table for value. If found, this function copies the associated key into
key, sets the current position to the key/value pair, and returns TRUE. If value is
not found in the hash table, this function invalidates the current position and returns
FALSE.

inline Boolean is_empty () const;
Returns TRUE if the hash table contains no entries; otherwise, this function returns
FALSE.

const Ktype& key ();
Returns the key of the key/value pair at the current position. If the current position
is invalid, an Error exception is raised.

inline long length () const;
Returns the number of entries in the hash table.

Boolean next ();
Advances the current position pointer to the next entry in the hash table and returns
TRUE. If the current position is invalid, this function advances to the first entry
and returns TRUE. If advancing past the last entry in the hash table, this function
invalidates the current position and returns FALSE.

Hash_Table<Ktype,Vtype>& operator= (const
Hash_Table<Ktype,Vtype>& ht);

Overloads the assignment operator for the class and assigns one hash table object to
have the value of another by duplicating the size and entries. This function invali-
dates the current position of the object.

Boolean operator== (const Hash_Table<Ktype,Vtype>& ht);
Overloads the equality operator for the hash table class. This function returns
TRUE if the tables have the same number of buckets with the same key/value
pairs; otherwise, this function returns FALSE.

inline Boolean operator!= (const Hash_Table<Ktype,Vtype>& ht);
Overloads the inequality operator for the hash table class. This function returns
TRUE if the tables have a different number of buckets or different key/value pairs;
otherwise, this function returns FALSE.

Unordered Sequence Classes

7-16 COOL User’s Manual

The following shows the output for the program:

 A programming language serves two related purposes: it provides a

 vehicle for the programmer to specify actions to be executed and a

 set of concepts for the programmer to use when thinking about what

 can be done. The first aspect ideally requires a language that is

 ‘close to the machine’, so that all important aspects of a machine

 are handled simply and efficiently in a way that is reasonably

 obvious to the programmer. The C language was primarily designed with

 this in mind. The second aspect ideally requires a language that is

 ‘close to the problem to be solved’ so that the concepts of a

 solution can be expressed directly and concisely. The facilities

 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words

 There are 71 unique words

 The most common word is ‘to’ and is used 9 times

Hash_Table Class 7.8 The Hash_Table<Ktype,VType> class is publicly derived from the Hash_Table
class and implements hash tables of user-specified types for both the key and the value.
This is accomplished by using the parameterized type capability of C++. The Hash_Ta-
ble class is dynamic in nature. Its size (that is, the number of buckets in the table) is
always a prime number. Each bucket holds eight items. No holes are left in a bucket; if a
key/value pair is removed from the middle of a bucket, the following entries are moved
up. When a hash on a key ends up in a bucket that is full, the table is enlarged.

Name: Hash_Table<Ktype,Vtype> — A dynamic, parameterized hash table

Synopsis: #include <COOL/Hash_Table.h>

Base Classes: Hash_Table, Generic

Friend Classes: None

Constructors: Hash_Table<Ktype,Vtype> ();
Allocates a hash table of the default size (three buckets).

Hash_Table<Ktype,Vtype> (unsigned long number);
Allocates a hash table with at least enough buckets for number entries.

Hash_Table<Ktype,Vtype> (const Hash_Table<Ktype,Vtype>& ht);
Duplicates the size and entries of another hash table object ht.

Member Functions: inline long capacity () const;
Returns the maximum number of entries that the hash table can hold.

void clear ();
Removes all entries from the hash table and adjusts the appropriate counts.

inline Hash_Table_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of hash table.

Unordered Sequence Classes

7-15COOL User’s Manual

 9 int main (void) {

10 Association<Gen_String,int> a1; // Declare Association variable

11 Gen_String s; // Temporary string variable

12 int counter = 0, max_count = 0; // Initialize word counters

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 if (a1.find (s)) // If word already found

18 ++a1.value (); // Increment use count

19 else a1.put (s, 1); // Else add word

20 }

21 a1.reset (); // Invalidate current position

22 Iterator<Association> i1; // Iterator object

23 while (a1.next ()) { // While there are still nodes

24 counter += a1.value (); // Sum number of words used

25 if (a1.value () > max_count) { // If most used word so far

26 i1 = a1.current_position (); // Save position in list

27 max_count = a1.value (); // And keep track of usage

28 }

29 }

30 cout << ”There are ” << counter << ” words\n”;

31 cout << ”There are ” << a1.length () << ” unique words\n”;

32 a1.current_position () = i1; // Set position of most used word

33 cout << ”The most common word is ‘” << a1.key () << ”’ and is used ” <<

a1.value () << ” times\n”;

34 exit (0); // Exit with successful status

35 }

Lines 1 through 3 include the COOL Association.h, Gen_String.h, and Iterator.h
class header files. Line 4 includes a statically allocated Gen_String object that contains
a paragraph of text to be scanned by the program. Lines 5 and 6 define a container class
of an association of strings and integers, and lines 7 and 8 define an iterator for the asso-
ciation class. Lines 10 through 13 declare various variables and print the complete para-
graph. A regular expression to match sequences of alphabetical characters (that is,
words) is compiled in line 14. Lines 15 through 20 contain a loop that finds each word in
the paragraph and adds it to the association if not already there. Otherwise, the current
frequency is incremented. Line 21 resets the internal current position iterator inside the
association object, and line 22 defines an iterator for an association object.

Lines 23 through 29 are the heart of the program. The loop iterates through the elements
of the association summing up the frequencies of all the words to get a total word count.
In addition, if the count for a given word is the largest so far, the position in the associa-
tion is saved in the iterator object. This procedure repeats until all words have been
scanned. Lines 30 through 33 output the results of the word search and counting. Fi-
nally, the program ends with a successful completion code.

Unordered Sequence Classes

7-14 COOL User’s Manual

inline void set_alloc_size (int size);
Updates the allocation growth size to be used when the growth ratio is zero. Default
allocation growth size is 100 bytes. If the size specified is negative, an Error ex-
ception is raised.

inline void set_growth_ratio (float ratio);
Updates the growth ratio for this instance of an association to the specified value.
When an association needs to grow, the current size is multiplied by the ratio to
determine the new size. If ratio is negative, an Error exception is raised.

inline void set_key_compare (Assoc_Key_Compare = NULL);
Updates the key compare function for this class of association. Assoc_Key_Com-

pare is a function of type Boolean (*Function)(const Type&, const Type&). If no
argument is provided, the operator== for Ktype over which the key for the associa-
tion class is parameterized is used.

inline long set_length (long number);
Specifies the number of elements in an association to allow random access via the
overloaded operator[] member function. If number is larger than the storage allo-
cated, this function truncates number to the largest value the allocated size will sup-
port. This function returns the updated number of elements.

inline void set_value_compare (Assoc_Value_Compare = NULL);
Updates the value compare function for this class of association.
Assoc_Value_Compare is a function of type Boolean (*Function)(const Ktype&,
const Vtype&). If no argument is provided, the operator== for Vtype over which
the value for the association class is parameterized is used.

inline Vtype& value ();
Returns a reference to the value of the key/value pair at the current position.

Friend Functions: friend ostream& operator<< (ostream os,
const Association<Ktype,Vtype>& assoc);

Provides a formatted output capability for reference to an Associa-
tion<Ktype,Vtype> object.

inline friend ostream& operator<< (ostream& os,
const Association<Ktype,Vtype>* assoc);

Provides a formatted output capability for a pointer to an Associa-
tion<Ktype,Vtype> object.

Association 7.7 The following program declares an association of strings and integers,

Example storing each word and its frequency of occurrence in a paragraph of text in individual

elements. The association of words is traversed using the current position functionality
of the class to determine the total the number of words and the most commonly used
word in the paragraph.

 1 #include <cool/Association.h> // Include Association class

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE Association<Gen_String,int> // Declare association type

 6 IMPLEMENT Association<Gen_String,int> // Implement association type

 7 DECLARE Iterator<Association> // Declare assoc iterator

 8 IMPLEMENT Iterator<Association> // Implement assoc iterator

Unordered Sequence Classes

7-13COOL User’s Manual

inline Boolean next ();
Advances the current position pointer to the next element in the association and
returns TRUE. If the current position is invalid, this function advances to the first
element and returns TRUE. If advancing past the last element, this function invali-
dates the current position and returns FALSE.

Association<Ktype,Vtype>& operator= (const Association<Ktype,Vtype>&);
Overloads the assignment operator for the Association class and assigns one asso-
ciation object to have the value of another by duplicating the size and element val-
ues. This function invalidates the current position. If the association is prohibited
from dynamically growing as necessary, an Error exception is raised.

Boolean operator== (const Association<Ktype,Vtype>& assoc) const;
Overloads the equality operator for the Association class. This function returns
TRUE if the associations have the same number of elements with the same values;
otherwise, this function returns FALSE.

inline Boolean operator!= (const Association<Ktype,Vtype>& assoc) const;
Overloads the inequality operator for the Association class. This function returns
TRUE if the associations have a different number of elements or different values;
otherwise, this function returns FALSE.

inline Boolean prev ();
Moves the current position pointer to the previous element in the association and
returns TRUE. If the current position is invalid, this function moves to the last ele-
ment and returns TRUE. If moving to the previous element passes the first element
in the association, this function invalidates the current position and returns
FALSE.

Boolean put (const Ktype& key, const Vtype& value);
Puts the key/value pair into the association. If a pair already exists with the speci-
fied key, the value for that pair is replaced with value. If required and not prohib-
ited, the association is grown. If the new pair is successfully put into the
association, TRUE is returned; otherwise, FALSE is returned.

Vtype& remove ();
Removes and returns a reference to the element at the current position. This func-
tion sets the current position to the element immediately following the element re-
moved. If the element removed is at the end of the association, this function
invalidates the current position. If the current position is invalid, and Error excep-
tion is raised.

Boolean remove (const Ktype& key);
Searches for key and, if found, this function removes the pair associated with key

and sets the current position to the element immediately following the element re-
moved; then, the function returns TRUE. If key is found at the end of the associa-
tion, this function invalidates the current position and returns TRUE. If key is not
found, this function returns FALSE.

inline void reset ();
Invalidates the current position.

inline void resize (long number);
Resizes the association for at least number elements. If a growth ratio has been se-
lected and it satisfies the resize request, the association is grown by this ratio. This
function invalidates the current position. If the size specified is zero or negative, an
Error exception is raised.

Unordered Sequence Classes

7-12 COOL User’s Manual

Name: Association<Ktype,Vtype> — A dynamic, parameterized association

Synopsis: #include <COOL/Association.h>

Base Classes: Vector<Type>, Vector, Generic

Friend Classes: None

Constructors: Association<Ktype,Vtype> ();
Creates an empty association of the specified type.

Association<Ktype,Vtype> (const Association<Ktype,Vtype>& assoc);
Duplicates the size and value of an association object.

Association<Ktype,Vtype> (unsigned long number);
Allocates enough storage for an association of a specific type to hold number ele-
ments.

Association<Type> (void* storage, unsigned long number);
Creates a static-sized association object for number elements whose storage stor-

age is provided by the user. If an object of this type attempts to grow dynamically
or the programmer invokes the resize member function, an Error exception is
raised.

Member Functions: inline long capacity ();
Returns the maximum number of elements the association can contain.

inline void clear ()
Removes all elements in the object and invalidates the current position.

inline Association_state& current_position ();
Returns the state information associated with the current position. This function
should be used with the Iterator<Type> class to save and restore the current posi-
tion, thus facilitating multiple iterators over an instance of association.

Boolean find (const Ktype& key);
Searches the association for key. If found, this function sets the current position and
returns TRUE; otherwise, this function resets the current position and returns
FALSE.

Boolean get (const Ktype& key, Vtype& value);
Gets the associated value for key. This function returns TRUE and modifies value

to contain the associated value. If key is not found, this function returns FALSE
and does not modify value.

Boolean get_key (const Vtype& value, Ktype& key) const;
Gets the first associated key for value. This function returns TRUE and modifies
key to contain the associated key. If value is not found, this function returns
FALSE and does not modify key.

inline const Ktype& key () const;
Returns the key of the key/value pair at the current position.

inline long length ();
Returns the number of elements (pairs) in the association.

Unordered Sequence Classes

7-11COOL User’s Manual

inline Boolean operator!= (Pair<T1,T2>&) const;
Returns TRUE if the pairs have different element values; otherwise, this function
returns FALSE .

inline T2& second ();
Returns a reference to the second element of the pair.

inline void set_compare (Pair_Compare = NULL);
Updates the compare function for this class of pair. Pair_Compare is a function of
type Boolean (*Function)(const Pair<T1,T2>&, const Pair<T1,T2>&). If no ar-
gument is provided, the operator== for the types over which the class is
parameterized are used.

inline void set_first (const T1&);
Sets the first element of the pair to the specified value.

inline void set_second (const T2&);
Sets the second element of the pair to the specified value.

Friend Functions: friend ostream& operator<< (ostream&, const Pair<T1,T2>&);
Provides a formatted output capability for reference to a Pair<T1,T2> object.

inline friend ostream& operator<< (ostream&, const Pair<T1,T2>*);
Provides a formatted output capability for a pointer to a Pair<T1,T2> object.

Association Class 7.6 The Association<Ktype,Vtype> class is privately derived from the

Vector<Type>class and implements a collection of pairs. The first of the pair is called
the key, and the second of the pair is called the value. The Association<Ktype,Vtype>
class implements a one-dimensional vector parameterized over a pair of objects. The
first type specifies the type of the key, and the second type specifies the type of the
value. Many of the member functions for Association<Ktype,Vtype> are inherited from
Vector<Type> and, consequently, are inline calls to the vector member function of the
same name.

The Association<Ktype,Vtype> class inherits the dynamic growth capability of the
Vector class. Vectors are, by default, dynamic in nature. A static-sized vector object is
selected by setting the growth allocation size to zero or by passing in a pointer to a block
of user-supplied storage to the constructor. If a vector is of static size and an operation is
performed that requires more storage, an Error exception is raised.

The Association<Ktype, Vtype> class implements the notion of a current position. This
is useful for iterating through the elements of a vector. The current position is main-
tained in a data member of type Association_state and is set or reset by all member
functions affecting elements in the class. Member functions are provided to reset the
current position, move to the next and previous elements, find an element, and get the
value at the current position. The Iterator<Type> class provides a mechanism to save
and restore the state associated with the current position, thus allowing the programmer
to use multiple iterators over the same instance of an association object.

Unordered Sequence Classes

7-10 COOL User’s Manual

 A programming language serves two related purposes: it provides a

 vehicle for the programmer to specify actions to be executed and a

 set of concepts for the programmer to use when thinking about what

 can be done. The first aspect ideally requires a language that is

 ‘close to the machine’, so that all important aspects of a machine

 are handled simply and efficiently in a way that is reasonably

 obvious to the programmer. The C language was primarily designed with

 this in mind. The second aspect ideally requires a language that is

 ‘close to the problem to be solved’ so that the concepts of a

 solution can be expressed directly and concisely. The facilities

 added to C to create C++ were primarily designed with this in mind.

 –– Bjarne Stroustrup

 There are 129 words

 There are 71 unique words

 The most common word is ‘to’ and is used 9 times

Pair Class 7.5 The parameterized Pair<T1,T2> class implements an association between one

object and another. The objects may be of different types, with the first representing the
key of the pair and the second representing the value of the pair. The Pair<T1,T2> class
is used by the Association<Ktype,Vtype> class to implement an association list (that is,
a vector of pairs of associated values).

Name: Pair<T1,T2> — A parameterized pair

Synopsis: #include <COOL/Pair.h>

Base Classes: None

Friend Classes: None

Constructors: Pair<T1,T2> ();
Creates an empty pair of the specified types.

Pair<T1,T2> (const Pair<T1,T2>&);
Duplicates the size and value of a pair object.

Pair<T1,T2> (const T1&, const T2&);
Creates a pair from the two specified elements.

Member Functions: inline const T1& get_first () const;
Returns a constant reference to the first element of the pair.

inline const T2& get_second () const;
Returns a constant reference to the second element of the pair.

inline T1& first ();
Returns a reference to the first element of the pair.

Pair<T1,T2>& operator= (Pair<T1,T2>&);
Assigns one pair object to have the value of another by duplicating element values.

Boolean operator== (Pair<T1,T2>&) const;
Returns TRUE if the pairs have the same element values; otherwise, this function
returns FALSE.

Unordered Sequence Classes

7-9COOL User’s Manual

26 while (l1.next ()) // While there are still nodes

27 if (l1.value () == cur_word) // If word appears in list

28 counter++; // Increment usage count

29 if (counter > max_count) { // If most used word so far

30 max_count = counter; // Update maximum count

31 s = cur_word; // And save word

32 }

33 l1.current_position () = i1; // Restore old current position

34 }

35 cout << ”There are ” << l1.length () << ” words\n”;

36 l1.remove_duplicates (); // Remove duplicate words

37 cout << ”There are ” << l1.length () << ” unique words\n”;

38 cout << ”The most common word is ‘” << s << ”’ and is used ” <<

max_count << ” times\n”;

39 exit (0); // Exit with successful status

40 }

Lines 1 through 3 include the COOL List.h, Gen_String.h, and Iterator.h class
header files. Line 4 includes a statically allocated Gen_String object that contains a
paragraph of text to be scanned by the program. Lines 5 and 6 define a container class of
a list of strings and lines 7 through 8 define an iterator for the list class. Lines 10 through
13 declare various variables and print the complete paragraph. A regular expression to
match sequences of alphabetical characters (that is, words) is compiled in line 14. Lines
15 through 18 contain a loop that finds each word in the paragraph and pushes it onto the
list. Line 18 resets the internal current position iterator inside the list object.

Lines 20 through 34 are the heart of the program. The loop iterates through the elements
of the list, assigning each word to a current word variable and the current position to a
list iterator object. An inner loop uses the current position functionality to loop through
the elements of the list counting the number occurrences of the current word. If this
count is the largest so far, both the word and the count are saved. When the inner loop
terminates, the outer loop establishes the previous current position maintained by the
iterator object and the procedure is repeated again until all words have been scanned.
Lines 35 through 38 output the results of the word search and counting. Finally, the
program ends with a successful completion code.

The following shows the output for the program:

Unordered Sequence Classes

7-8 COOL User’s Manual

Boolean sublist (List<Type>& l1, const List<Type>& l2);
Searches for l2 in the object. If l2 is a sublist of the object, this function sets the
current position of the object to the first element of l2, sets l1 to the sublist within
the object (starting at the new current position), and returns TRUE; otherwise, this
function sets l1 list to NIL (an empty list) and returns FALSE.

void tail (List<Type>& l, int n = 1);
Sets l to point to the nth tail of the object. The nth tail is a list whose first element is
the nth (zero-relative) element of the object. When it has no second argument, tail
sets l to point to the first tail of the object. n=1 sets l to all of the elements in the
object. This function sets l to NIL if n is greater than or equal to the number of
elements in the object. This function sets the current position to the nth element of
the object.

inline Type& value ();
Returns the element at the current position in the object. An Error exception is
raised if the current position is invalid.

Friend Functions: friend ostream& operator<< (ostream& os, const List<Type>& l);
Provides a formatted output capability for a reference to a list.

inline friend ostream& operator<< (ostream& os, const List<Type>* l);
Provides a formatted output capability for a pointer to a list.

List Example 7.4 The following program declares a list of strings and stores the words in a para-

graph of text in individual nodes. The list of words is traversed using a parameterized
iterator, and the nodes are manipulated to determine the total number of words, the
number of unique words, and the most commonly used word in the paragraph. These
results are sent to the standard output, and the program then ends.

 1 #include <cool/List.h> // Include list header file

 2 #include <cool/Gen_String.h> // Include COOL String class

 3 #include <cool/Iterator.h> // Include COOL Iterator class

 4 #include ”paragraph.h” // Include Stroustrup text

 5 DECLARE List<Gen_String> // Declare list type

 6 IMPLEMENT List<Gen_String> // Implement list type

 7 DECLARE Iterator<List> // Declare list iterator type

 8 IMPLEMENT Iterator<List> // Implement list iterator type

 9 int main (void) {

10 List<Gen_String> l1; // Declare list variable

11 Gen_String s; // Temporary string variable

12 int max_count = 0; // Temporary counting variable

13 cout << text; // Output paragraph

14 text.compile (”[a–zA–Z]+”); // Match any alphabetical word

15 while (text.find ()) { // While still more words

16 text.sub_string (s, text.start (), text.end ()); // Get word

17 l1.push (s); // And add to list

18 }

19 l1.reset (); // Invalidate current position

20 while (l1.next ()) { // While there are still nodes

21 int counter = 0; // Initialize counter

22 Gen_String cur_word; // Temporary string variable

23 Iterator<List> i1 = l1.current_position (); // Save current position

24 cur_word = l1.value (); // Get word to be counted

25 l1.reset (); // Invalidate current position

Unordered Sequence Classes

7-7COOL User’s Manual

Type& remove ();
Removes the element at the current position in the object and returns a reference to
the element. This function sets the current position to the element immediately fol-
lowing the element removed. If the current position is invalid, an Error exception
is raised.

inline Boolean remove (const Type& value);
Removes the first occurrence of value in the object. If the element is found, this
function removes it from the object, sets the current position to the element imme-
diately following the element removed, and returns TRUE. If the element is not
found, this function returns FALSE.

Boolean remove_duplicates ();
Removes any duplicate elements from the object. This function returns TRUE if
any elements were removed; otherwise, this function returns FALSE. This func-
tion invalidates the current position.

inline Boolean replace (const Type& value1, const Type& value2);
Replaces the first occurrence of value1 in the object with value2 and sets the cur-
rent position to this element. If value1 is found, this function returns TRUE; other-
wise, this function returns FALSE.

inline Boolean replace_all (const Type& value1, const Type& value1);
Replaces all occurrences of value1 in the object with value2. This function returns
TRUE if any elements were replaced; otherwise, this function returns FALSE.
This function invalidates the current position.

inline void reset ();
Invalidates the current position in the object.

void reverse ();
Reverses the order of the elements in the object. This function invalidates the cur-
rent position.

Boolean search (const List<Type>& l);
Searches for the sublist l in the object. If l is a sublist in the object, this function sets
the current position in the object to the first element of the sublist and returns
TRUE; otherwise, this function returns FALSE.

inline void set_compare (List_Compare = NULL);
Updates the compare function for the object. List_Compare is a function of type
Boolean (*Function) (const Type&, const Type&). If no argument is provided, the
operator= for the type over which the class is parameterized is used.

Boolean set_tail (const List<Type>& l, int n = 1);
Sets the nth tail of the object to l. This function sets the current position of the object
to the first element of the nth tail. This function returns TRUE if the object has an
nth tail; otherwise, this function returns FALSE.

inline void sort (List_Predicate p);
Sorts the elements of the object by using p for determining the collating sequence.
List_Predicate is a function of type int (*Function) (const Type&, const Type&)
that returns –1 if the first argument should precede the second, zero if they are
equal, and 1 if the first argument should follow the second.

Unordered Sequence Classes

7-6 COOL User’s Manual

Type pop ();
Removes and returns the first element in the object. This function invalidates the
current position. If there is nothing in the object, an Error exception is raised.

Boolean pop (Type& value);
Copies the first element in the object to value and removes it from the object. This
function invalidates the current position. If there is nothing in the list, an Error
exception is raised.

int position ();
Returns the current position as a zero-relative index into the object that can be used
with the overloaded operator[].

int position (const Type& value);
Searches the object for value. If the element is found, this function sets the current
position to this element and returns the zero-relative index of this element; other-
wise, this function returns –1.

inline Boolean prepend (const List<Type>& l);
Adds the elements of l to the beginning of the object and returns TRUE. This func-
tion sets the current position to the first element added. This function returns
FALSE if the specified list argument is NIL.

Boolean prev ();
Moves the current position to the previous element in the object and returns TRUE.
If the current position is invalid, this function sets the current position to the last
element and returns TRUE. If the current position is the first element in the object,
this function invalidates the current position and returns FALSE.

Boolean push (const Type& value);
Adds value to the beginning of the object and returns TRUE. This function sets the
current position to the first element of the object. This function returns FALSE
when heap memory is exhausted.

inline Boolean push_end (const Type& value);
Adds value to the end of the object and returns TRUE. This function sets the cur-
rent position to the last element of the object. This function returns FALSE when
heap memory is exhausted.

inline Boolean push_end_new (const Type& value);
Adds value to the end of the object (if it is not already in the object) and sets the
current position to this element. This function returns TRUE if the element is
added to the object; otherwise, this function returns FALSE.

inline Boolean push_new (const Type& value);
Adds value to the beginning of the object (if it is not already in the object) and sets
the current position to this element. This function returns TRUE if the element is
added to the object; otherwise, this function returns FALSE.

Boolean put (const Type& value, int n = 0);
Replaces the nth (zero-relative) element in the object with value. This function re-
turns TRUE if the nth element exists; otherwise, this function returns FALSE. If n
is negative, an Error exception is raised.

Unordered Sequence Classes

7-5COOL User’s Manual

inline List<Type>& operator+ (const List<Type>& l);
Returns a reference to a new list containing the concatenation of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator– (const List<Type>& l);
Returns a reference to a new list containing the difference of the object and l. Since
the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator^ (const List<Type>& l);
Returns a reference to a new list containing the exclusive-or of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator& (const List<Type>& l);
Returns a reference to a new list containing the intersection of the object and l.
Since the new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator| (const List<Type>& l);
Returns a reference to a new list containing the union of the object and l. Since the
new list is allocated from heap memory, you must delete its storage.

inline List<Type>& operator= (List<Type>& l);
Assigns the object (the list on the left-hand side of the assignment) to point to the
same set of elements as l (on the right-hand side of the assignment) and returns a
reference to the updated object. Also, this function invalidates the current position.

inline List<Type>& operator+= (const List<Type>& l);
Sets the object (the list on the left-hand side of the operator) to the concatenation of
the object and l (the list on the right-hand side of the operator) and returns a refer-
ence to the updated object. Also, this function invalidates the current position.

inline List<Type>& operator–= (const List<Type>& l);
Returns a reference to the modified object containing the difference of the object
and l.

inline List<Type>& operator^= (const List<Type>& l);
Returns a reference to the modified object containing the exclusive-or of the object
and l.

inline List<Type>& operator&= (const List<Type>&);
Returns a reference to the modified object containing the intersection of the object
and l.

inline List<Type>& operator|= (const List<Type>&);
Returns a reference to the modified object containing the union of the object and l.

Boolean operator== (const List<Type>& l) const;
Returns TRUE if the elements of the two lists have the same values; otherwise, this
function returns FALSE.

inline Boolean operator!= (const List<Type>& l) const;
Returns TRUE if the elements of the two lists have different values; otherwise,
this function returns FALSE.

Type& operator[] (int n);
Returns a reference to the the nth (zero-relative) element in the object. This func-
tion sets the current position to this element. If the index is negative or is greater
than the number of nodes in the list, an Error exception is raised.

Unordered Sequence Classes

7-4 COOL User’s Manual

inline Boolean is_empty ();
Returns TRUE if the object does not have any elements; otherwise, this function
returns FALSE.

 void last (List<Type>& l, int n = 1);
Sets l to point to the last n elements of the object. When it has no second arguments,
last sets l to point to the last element of the object. If n is equal to the number of
elements in the object, this function sets l to point to all the elements of the object. If
n is greater than the number of elements in the object or n is zero, this function sets l
to NIL, a list with no elements. This function sets the current position to the first of
the last n elements of the list object.

int length ();
Returns the number of elements in the object.

void lunion (const List<Type>& l);
Sets the object to contain everything that is an element of either the object or l. This
function invalidates the current position of the list object.

inline Boolean member (List<Type>& l, const Type& value);
Searches the object for value. If the element is found, this function sets the current
position to this element, sets l to the sublist within the object starting with the de-
sired element, and returns TRUE. If the value is not found, this function sets l to
NIL and returns FALSE.

inline void merge (const List<Type>& l, List_Predicate p);
Merges the elements of l into the object by using the supplied predicate p for deter-
mining the collating sequence. List_Predicate is a function of type Boolean
(*Function)(const Type&, const Type&).

inline Boolean next ();
Advances the current position to the next element in the object and returns TRUE.
If the current position is invalid, this function sets the current position to the first
element and returns TRUE. If the current position is the last element of the object,
this function invalidates the current position and returns FALSE.

Boolean next_difference (const List<Type>& l);
Sets the current position to the next element in the difference of the object and l and
returns TRUE. If there are no more elements in the difference, this function invali-
dates the current position and returns FALSE.

Boolean next_exclusive_or (const List<Type>& l);
Sets the current position to the next element in the exclusive-or of the object and l
and returns TRUE. If there are no more elements in the exclusive-or, this function
invalidates the current position and returns FALSE.

Boolean next_intersection (const List<Type>& l);
Sets the current position to the next element in the intersection of the object and l
and returns TRUE. If there are no more elements in the intersection, this function
invalidates the current position and returns FALSE.

Boolean next_lunion (const List<Type>& l);
Sets the current position to the next element in the union of the object and l and
returns TRUE. If there are no more elements in the union, this function invalidates
the current position and returns FALSE.

Unordered Sequence Classes

7-3COOL User’s Manual

void copy (List<Type>& l) const;
Sets l to a copy of the object. This function invalidates the current position of l.

inline List_state& current_position () const;
Returns a reference to the state information associated with the current position.
This function should be used with the Iterator<Type> class to save and restore the
current position, thus facilitating multiple iterators over an instance of list.

void describe (ostream& os);
Provides a formatted output capability for displaying the internal structure of the
list including reference counts and values for each node.

void difference (const List<Type>& l);
Removes from the object the elements that also appear in l. This function invali-
dates the current position of the list object.

void exclusive_or (const List<Type>& l);
Performs an exclusive-or operation by setting the object to contain all the elements
in the object that are not in l, and all the elements in l that are not in the object. This
function invalidates the current position of the list object.

inline Boolean find (const Type& value, List_state start = NULL);
Searches the object for value beginning at the current position specified. If a start-
ing point is not provided, this function begins the search at the head of the list. If
value is found, this function sets the current position to this element and returns
TRUE; otherwise, this function returns FALSE. If value is not found, this function
returns FALSE and resets the current position of the list object.

inline Type& get (int n = 0);
Returns a reference to the nth (zero-relative) element in the object. This function
sets the current position to this element. If the index is negative or is greater than the
number of nodes in the list, an Error exception is raised.

inline Boolean insert_after (const Type& value1, const Type& value2);
Inserts value1 after value2 in the object, sets the current position to this new ele-
ment, and returns TRUE. If value2 is not in the object, this function returns
FALSE.

inline Boolean insert_after (const Type& value);
Inserts value after the element at the current position in the object, sets the current
position to this new element, and returns TRUE. If the current position is invalid,
an Error exception is raised.

inline Boolean insert_before (const Type& value1, const Type& value2);
Inserts value1 before value2 in the object, sets the current position to this new ele-
ment, and returns TRUE. If value2 is not in the object, this function returns
FALSE.

inline Boolean insert_before (const Type& value);
Inserts value before the element at the current position in the object, sets the current
position to this new element, and returns TRUE. If the current position is invalid,
an Error exception is raised.

void intersection (const List<Type>& l);
Sets the object to contain only the elements that exist in both the object and l. This
function invalidates the current position of the list object.

Unordered Sequence Classes

7-2 COOL User’s Manual

List Class 7.3 The List<Type> class implements Common Lisp-style lists that provide a rich

collection of member functions for list manipulation and management. A list consists
of a collection of nodes, each of which contains a reference count, a pointer to the next
node in the list, and a data element of a user-specified type. The List<Type> class uses
reference counting to allow more efficient sharing and reuse of list node objects. The
reference count indicates the number of list or node objects pointing to a node and en-
sures that the node and the data are deallocated when the node is no longer referenced.

Considerable attention has been paid to performance and efficiency concerns in the
List<Type> class. The Base_List class implements generic list functionality required
by the parameterized List class. The Base_List class is not usable as a stand-alone class,
but used to derive the List<Type> class. By providing generic operations in a base class,
the quantity of code generated for each implementation of a parameterized class is re-
duced considerably. Consequently, most member functions for List<Type> are inline
calls to the generic equivalent function in the base List class.

Name: List<Type> — A parameterized list

Synopsis: #include <COOL/List.h>

Base Classes: List, Generic

Friend Classes: None

Constructors: List<Type> ();
Creates an empty list of the specified type.

List<Type> (const Type& value);
Creates a list with one element of the specified type and value.

List<Type> (int number, Type&, ...);
Creates a list of number elements of the specified type initialized with the optional
values provided.

List<Type> (List<Type>& l);
Creates a list from l of the specified type.

List<Type> (const Type& value, List<Type>& l);
Creates a list of the specified type with value as the first element and l as the tail.

Member Functions: Boolean append (const List<Type>& l);
Adds the elements of l to the end of the object and returns TRUE. This function sets
the current position to the first element added. This function returns FALSE if a
new node cannot be created.

void but_last (List<Type>& l, int n = 1);
Sets l to point to all but the last n elements of the object. When no second argument
is specified, but_last sets l to point to all but the last element of the object. A second
argument whose value is zero sets l to point to all of the elements in the object. This
function sets l to NIL if the second argument is greater than or equal to the number
of elements in the object. This function invalidates the current position of l.

void clear ();
Removes all elements in the object and invalidates the current position.

7-1COOL User’s Manual

UNORDERED
SEQUENCE CLASSES

Introduction 7.1 The unordered sequence classes are a collection of basic data structures that im-

plement random-access data structures as parameterized classes, thus allowing the user
to customize a generic template to create a specific user-defined class. The following
classes are discussed in this section:

• List<Type>

• Pair<T1, T2>

• Association<Ktype, Vtype>

• Hash_Table<Ktype,Vtype>

The List<Type> class implements dynamic, Common Lisp-style lists supporting such
functions as insert, delete, replace, search, reverse, print, and sort. The Pair<T1,T2>
class implements a simple object that contains two other objects, primarily for use in the
Association<Ktype, Vtype> class. The Association<Ktype, Vtype> class maintains a
collection of associated objects. The Hash_Table<Ktype, Vtype> class implements dy-
namic hash tables with the option for user-defined hashing functions. The List<Type>,
Hash_Table<Ktype, Vtype>, and Association<Ktype, Vtype> classes support the no-
tion of a current position. The example programs in this section solve the same problem
using different data structures, allowing the reader to compare the different features of
each.

In order to achieve successful compilation and usage, certain operations must be sup-
ported by any user-specified type over which an unordered sequence class is
parameterized. The member functions operator=, operator<, operator>, operator<<,
and operator== must be overloaded for any class object used as the type. Note that
built-in types already have these functions defined.

NOTE: The unordered sequence classes use operator= of the parameterized type when
copying elements. You should be careful when parameterizing an unordered sequence
class over a pointer to a type, since the default pointer assignment operator usually cop-
ies the pointer, not the value pointed at.

Requirements 7.2 This section discusses the parameterized unordered sequence container classes. It

assumes that you have read and understood Section 5, Parameterized Templates. In ad-
dition, no attempt is made to discuss the concepts and algorithms for the data structures
discussed. You should refer to a general data structures or computer science text for this
information.

Printed on: Wed Apr 18 07:07:48 1990

Last saved on: Tue Apr 17 14:02:51 1990

Document: s7

For: skc

pl2ps 3.2.1 Copyright 1987 Interleaf, Inc.

